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The relation between the W-boson mass,MW, the Z-boson mass,MZ, the �ne structure
constant, �, and the Fermi constant, G�,

M2
W

�
1 � M2

W

M2
Z

�
=

��p
2G�

(1 + �r) ; (1)

is of central importance for precision tests of the electroweak theory. Accordingly, a lot
of e�ort has been devoted over more than two decades to accurately predict the quantity
�r, which summarises the radiative corrections, within the Standard Model (SM) and
extensions of it.

The one-loop result [1] can be written as

�r(�) = ��� c2W
s2W

��+�rrem(MH); (2)

where c2W =M2
W=M

2
Z, s

2
W = 1�c2W. It involves large fermionic contributions from the shift

in the �ne structure constant due to light fermions, �� / logmf , and from the leading
contribution to the � parameter, ��. The latter is quadratically dependent on the top-
quark mass,mt, as a consequence of the large mass splitting in the isospin doublet [2]. The
remainder part, �rrem, contains in particular the dependence on the Higgs-boson mass,
MH. Higher-order QCD corrections to �r are known at O(��s) [3] and O(��2

s ) [4,5].
Recently the full electroweak two-loop result for �r has been completed. It consists of

the fermionic contribution [6,7,8], which involves diagrams with one or two closed fermion
loops, and the purely bosonic two-loop contribution [9].

Beyond two-loop order the results for the pure fermion-loop corrections (i.e. contribu-
tions containing n fermion loops at n-loop order) are known up to four-loop order [10].
They contain in particular the leading contributions in �� and ��. Most recently re-
sults for the leading three-loop contributions of O(G3

�m
6
t) and O(G2

��sm
4
t) have been

obtained for arbitrary values of MH (by means of expansions around MH = mt and for
MH � mt) [11], generalising a previous result which was obtained in the limitMH = 0 [12].

Eq. (1) is usually employed for predicting the W-boson mass,

M2
W = M2

Z

(
1

2
+

s
1

4
� ��p

2G�M2
Z

h
1 + �r(MW;MZ;MH;mt; : : : )

i)
; (3)

which is done by an iterative procedure since �r itself depends on MW. Comparison
of the prediction for MW within the SM with the experimental value allows to obtain
indirect constraints on the Higgs-boson mass. These constraints are a�ected both by the
experimental error of MW and by the uncertainty of the theory prediction. The current
experimental error of the W-boson mass is ÆM exp

W = 34 MeV [13]. The accuracy in the

measurement of the W-boson mass is expected to improve to about ÆM
exp;Tev=LHC
W =

15 MeV [14] from the measurements at RunII of the Tevatron and the LHC, and to about
ÆM exp;LC

W = 7 MeV at a future Linear Collider (LC) running at the WW threshold [15].
The uncertainty of the theory prediction is caused by the experimental errors of the input
parameters, e.g. mt, and by the uncertainty from unknown higher-order corrections. In
the global SM �t to all data [16] the highest sensitivity to MH arises from the predictions
for MW and the e�ective weak mixing angle at the Z-boson resonance, sin2 �e�.
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In the present paper we combine the various pieces being relevant for the prediction of
MW into a common result and analyse the numerical impact of the di�erent contributions.
Since in particular the electroweak two-loop result is very lengthy and involves numerical
integrations of two-loop scalar integrals, it is not possible to present the full result in a
compact analytic form. We therefore provide a simple parametrisation of the full result
which is easy to implement and should be accurate enough for practical applications. We
discuss the sources of the remaining theoretical uncertainties and obtain an estimate for
the uncertainty from unknown higher-order corrections.

We incorporate the following contributions into the result for �r,

�r = �r(�) +�r(��s) +�r(��
2
s) +�r(�

2)
ferm+�r(�

2)
bos +�r(G

2
��sm4

t
) +�r(G

3
�m

6

t
); (4)

where �r(�) is the one-loop result, eq. (2), �r(��s) and �r(��
2
s
) are the two-loop [3] and

three-loop [4, 5] QCD corrections, and �r(�
2)

ferm [6, 7, 8] and �r(�
2)

bos [9] are the fermionic
and purely bosonic electroweak two-loop corrections, respectively. The contributions
�r(G

2

�
�sm4

t
) and �r(G

3

�
m6

t
) have been obtained from the leading three-loop contributions to

�� given in Ref. [11].
We have not included the pure fermion-loop contributions at three-loop and four-

loop order obtained in Ref. [10], because their contribution turned out to be small as a
consequence of accidental numerical cancellations, with a net e�ect of only about 1 MeV
in MW (using the real-pole de�nition of the gauge-boson masses). Since the result given
in Ref. [10] contains the leading contributions involving powers of �� and �� beyond
two-loop order, we do not make use of resummations of �� and �� as it was often done
in the literature in the past (see e.g. Refs. [17]). Accordingly, the quantity �r appears
in eq. (3) in fully expanded form. This means, for instance, that we do not include the

O(�3) term 3(��)2�r(�)bos, which can be inferred from the electric charge renormalisation.
It a�ects the prediction for MW by about 1:5 MeV. This shift is however expected to
partially cancel with the corresponding contributions proportional to (��)(��)�r

(�)
bos and

(��)2�r
(�)
bos in an analogous way as for the pure fermion-loop contributions.

In Table 1 the numerical values of the di�erent contributions to �r are given for
MW = 80:426 GeV [13]. The other input parameters that we use in this paper are [13]

mt = 174:3 GeV; mb = 4:7 GeV; MZ = 91:1875 GeV; �Z = 2:4952 GeV;

��1 = 137:03599976; �� = 0:05907; �s(MZ) = 0:119;

G� = 1:16637 � 10�5 GeV�2; (5)

where �� � ��lept + ��
(5)
had, and ��lept = 0:0314977 [18]. For ��

(5)
had we use the value

given in Ref. [19], ��(5)
had = 0:027572 � 0:000359. The total width of the Z boson, �Z,

appears as an input parameter since the experimental value ofMZ in eq. (5), corresponding
to a Breit{Wigner parametrisation with running width, needs to be transformed in our
calculation into the mass parameter de�ned according to the real part of the complex
pole, which corresponds to a Breit{Wigner parametrisation with a constant decay width,
see Ref. [7]. It is understood that MW in this paper always refers to the conventional
de�nition according to a Breit{Wigner parametrisation with running width. The change
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MH=GeV �r(�) �r(��s) �r(��
2
s) �r

(�2)
ferm �r

(�2)
bos �r(G

2
�
�sm4

t
) �r(G

3
�
m6

t
)

100 283:41 35:89 7:23 28:56 0:64 �1:27 �0:16
200 307:35 35:89 7:23 30:02 0:35 �2:11 �0:09
300 323:27 35:89 7:23 31:10 0:23 �2:77 �0:03
600 353:01 35:89 7:23 32:68 0:05 �4:10 �0:09
1000 376:27 35:89 7:23 32:36 �0:41 �5:04 �1:04

Table 1: The numerical values (�104) of the di�erent contributions to �r speci�ed in
eq. (1) are given for di�erent values of MH and MW = 80:426 GeV (the W and Z masses
have been transformed so as to correspond to the real part of the complex pole). The
other input parameters are listed in eq. (5).

of parametrisations is achieved with the one loop QCD corrected value of the W-boson
width as described in Ref. [7].

Table 1 shows that the two-loop QCD correction, �r(��s), and the fermionic elec-

troweak two-loop correction, �r(�
2)

ferm are of similar size. They both amount to about 10%
of the one-loop contribution, �r(�), entering with the same sign. The most important
correction beyond these contributions is the three-loop QCD correction, �r(��

2
s
), which

leads to a shift in MW of about �11 MeV. For large values of MH also the contribution

�r(G
2
�
�sm4

t
) becomes sizable. The purely bosonic two-loop contribution, �r

(�2)
bos , and the

leading electroweak three-loop correction, �r(G
3
�
m6

t
), give rise to shifts in MW which are

signi�cantly smaller than the experimental error envisaged for a future Linear Collider,
ÆM exp;LC

W = 7 MeV [15].
Since �r is evaluated in Table 1 for a �xed value of MW, the contributions �r

(��s)

and �r(��
2
s ) areMH-independent. In the iterative procedure for evaluating MW according

to eq. (3), on the other hand, also these contributions becomeMH-dependent through the
MH-dependence of the inserted MW value.

The result for MW based on eqs. (3), (4) can be approximated by the following simple
parametrisation (see Ref. [20] for an earlier parametrisation of MW),

MW = M0
W � c1 dH� c2 dH

2 + c3 dH
4 + c4(dh� 1) � c5 d� + c6 dt� c7 dt

2

� c8 dHdt + c9 dhdt � c10 d�s + c11 dZ; (6)

where

dH = ln

�
MH

100 GeV

�
; dh =

�
MH

100 GeV

�2

; dt =
� mt

174:3 GeV

�2
� 1;

dZ =
MZ

91:1875 GeV
� 1; d� =

��

0:05907
� 1; d�s =

�s(MZ)

0:119
� 1; (7)
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ÆMW(full result)= MeV ÆMW(eqs. (6){(8))= MeV

ÆMH = 100 GeV �41:3 �41:4
Æmt = 5:1 GeV 31:0 31:0

ÆMZ = 2:1 MeV 2:6 2:6

Æ
�
��

(5)
had

�
= 0:00036 �6:5 �6:5

Æ�s(MZ) = 0:0027 �1:7 �1:7

Table 2: Shifts in MW caused by varying MH by 100 GeV and the other input parameters
by 1� around their experimental central values [13]. The �rst column shows the full result
for MW, while the second column is based on the simple parametrisation of eqs. (6){(8).
The shifts ÆMW are relative to the value MW = 80:3799 GeV which is the result for
MH = 100 GeV and the central values of the other input parameters as speci�ed in
eq. (5).

and the coeÆcients M0
W; c1; : : : ; c11 take the following values

M0
W = 80:3799 GeV; c1 = 0:05429 GeV; c2 = 0:008939 GeV;

c3 = 0:0000890 GeV; c4 = 0:000161 GeV; c5 = 1:070 GeV;

c6 = 0:5256 GeV; c7 = 0:0678 GeV; c8 = 0:00179 GeV;

c9 = 0:0000659 GeV; c10 = 0:0737 GeV; c11 = 114:9 GeV: (8)

The parametrisation given in eqs. (6){(8) approximates the full result for MW to better
than 0.5 MeV over the whole range of 10 GeV � MH � 1 TeV if all other experimental
input values vary within their combined 2� region around their central values given in
eq. (7).

In Table 2 the full result for MW and the parametrisation of eqs. (6){(8) are com-
pared with each other. The table shows the shifts in MW (relative to the value MW =
80:3799 GeV, which is the result for MH = 100 GeV and the central values of the other
input parameters as speci�ed in eq. (5)) induced by varyingMH by 100 GeV and the other
input parameters by 1� around their experimental central values [13]. In the example of
Table 2, where only one parameter has been varied in each row and all others have been
kept at their central values, the maximum deviation between the full result for MW and
the parametrisation of eqs. (6){(8) is below 0.1 MeV.

The parametrisation of eqs. (6){(8) yields a good approximation of the full result for
MW even for values of MH much smaller than the experimental 95% C.L. lower bound
on the Higgs-boson mass, MH = 114:4 GeV [21]. If one restricts to the region MH >
100 GeV, a slight readjustment of the coeÆcients in eq. (8) yields an even more accurate
parametrisation of the full result. If eqs. (6), (7) are used together with the following

4



values of the coeÆcients,

M0
W = 80:3800 GeV; c1 = 0:05253 GeV; c2 = 0:010345 GeV;

c3 = 0:001021 GeV; c4 = �0:000070 GeV; c5 = 1:077 GeV;

c6 = 0:5270 GeV; c7 = 0:0698 GeV; c8 = 0:004055 GeV;

c9 = 0:000110 GeV; c10 = 0:0716 GeV; c11 = 115:0 GeV; (9)

the full result forMW is approximated to better than 0.2 MeV over the range of 100 GeV �
MH � 1 TeV if all other experimental input values vary within their combined 2� region
around their central values given in eq. (7).

From Table 2 one can read o� the parametric theoretical uncertainties in the pre-
diction for MW being caused by the experimental errors of the input parameters. The
dominant parametric uncertainty at present (besides the dependence on MH) is induced
by the experimental error of the top-quark mass. It is almost as large as the current ex-
perimental error of the W-boson mass, ÆM exp

W = 34 MeV [13]. The uncertainty caused by
the experimental error of mt will remain the dominant source of theoretical uncertainty
in the prediction for MW even at the LHC, where the error on mt will be reduced to
Æmt = 1{2 GeV [22]. A further improvement of the parametric uncertainty of MW will
require the precise measurement of mt at a future Linear Collider [23], where an accuracy
of about Æmt = 0:1 GeV will be achievable [15].

We now turn to the second source of theoretical uncertainties in the prediction forMW,
namely the uncertainties from unknown higher-order corrections. Di�erent approaches
have been used in the literature for estimating the possible size of uncalculated higher-
order corrections [24,25,26,7]. The \traditional Blue Band method" is based on the fact
that the results of calculations employing di�erent renormalisation schemes or di�erent
prescriptions for including non-leading contributions in resummed or expanded form dif-
fer from each other by higher-order corrections. The deviations between the results of
di�erent codes in which the same corrections have been organised in a somewhat dif-
ferent way are used in this method as a measure for the size of unknown higher-order
corrections [24]. In applying this method it is not easy to quantify how big the variety of
di�erent \options" and di�erent codes should be in order to obtain a reasonable estimate
of the higher-order uncertainties. As the method cannot account for genuine e�ects of
irreducible higher-order corrections, it may lead to an underestimate of the theoretical
uncertainties if at an uncalculated order a new source of potentially large corrections
appears, e.g. a certain enhancement factor.

In Ref. [26] a di�erent prescription has been proposed, in which for each type of
unknown corrections the relevant enhancement factors are identi�ed and the remaining
coeÆcient arising from the actual loop integrals is set to unity. In Ref. [7] higher-order
QCD corrections have been estimated in two di�erent ways, from the renormalisation scale
dependence (in particular taking into account the e�ect of switching from the on-shell to
the MS de�nition of the top-quark mass) and from assuming that, for instance, the ratio
of the O(�2�s) and O(�2) corrections is of the same size as the ratio of the O(��s) and
O(�) corrections.

Several of the corrections whose possible size had been estimated in Refs. [25,26,7]
have meanwhile been calculated [9, 11], and it turned out that the estimates agree rea-

5



sonably well with the actual size of the corrections. This adds con�dence to applying the
same kind of methods also for an estimate of the remaining higher-order uncertainties.

There are three sources of remaining uncertainties in the prediction for MW from
unknown higher-order corrections:

� The corrections at O(�2�s) beyond the known contribution of O(G2
��sm

4
t):

The numerical e�ect of the O(G2
��sm

4
t) correction was found to be up to 5 MeV in

MW for a light Higgs-boson mass, MH
<� 300 GeV [11]. This contribution represents

the leading term in an expansion for asymptotically large values of mt. In the
calculation of the electroweak two-loop corrections it was found that the formally
next-to-leading order term of O(G2

�m
2
tM

2
Z) has approximately the same numerical

e�ect as the formally leading term of O(G2
�m

4
t) [27]. It can therefore be expected

that also the formally next-to-leading order term ofO(G2
��sm

2
tM

2
Z) may be of similar

size as the leading O(G2
��sm

4
t) term. We therefore assign an uncertainty of about

3 MeV to the remaining theoretical uncertainties at O(�2�s) (for MH
<� 300 GeV).

� The unknown electroweak three-loop corrections:
The numerical e�ect of the O(G3

�m
6
t ) contribution was found to be small [11], shift-

ing MW by less than 0.3 MeV for MH
<� 300 GeV. This shift is signi�cantly smaller

than the estimate in Ref. [26]. The pure fermion-loop corrections at three-loop or-
der were found in Ref. [10] to shift MW by about 1 MeV, which however involved
an accidental numerical cancellation. It thus doesn't seem to be justi�ed to as-
sume that all other electroweak three-loop corrections are completely negligible. In
Ref. [7] it was pointed out that reparametrising the W-boson width, which enters
the prediction for MW at the two-loop level, by G� instead of � shifts the prediction
for MW by about 1 MeV, which is formally an e�ect of O(�3). In order to take into
account uncertainties of this kind (see also the discussion below eq. (4)) we assign
an uncertainty of 1{2 MeV to the unknown corrections at O(�3).

� The four-loop QCD corrections of O(��3
s ):

The possible e�ect of the leading term of O(G��
3
sm

2
t ) was estimated in Ref. [26] to

be about 1.3 MeV. Employing the known results at lower order of �s and assuming
a geometric progression yields a slightly larger result. We thus assign an uncertainty
of 1{2 MeV for the O(��3

s ) corrections.

Adding the above estimates for the di�erent kinds of unknown higher-order corrections in
quadrature, we �nd as estimate of the remaining theoretical uncertainties from unknown
higher-order corrections

ÆM theo
W � 4 MeV: (10)

This estimate holds for a relatively light Higgs boson, MH
<� 300 GeV. For a heavy Higgs

boson, i.e.MH close to the TeV scale, the remaining theoretical uncertainty is signi�cantly
larger.

In Fig. 1 we have updated the comparison between the theory prediction forMW within
the SM and the experimental value, using the currently most accurate theory prediction
based on eqs. (3), (4) and the most up-to-date experimental data [13]. For the theoretical
uncertainty the estimate of eq. (10) and the parametric uncertainties corresponding to 1�

6



200 400 600 800 1000
80.15

80.2

80.25

80.3

80.35

80.4

80.45

80.5

M
W

[G
eV

]

MH [GeV]

experimental lower bound on MH = 114.4 GeV

M exp
W = (80.426 ± 0.034) GeV

SM prediction for MW

Figure 1: Prediction for MW in the SM as a function of MH for mt = 174:3 � 5:1 GeV.
The current experimental value, M exp

W = 80:426 � 0:034 GeV [13], and the experimental
95% C.L. lower bound on the Higgs-boson mass,MH = 114:4 GeV [21], are also indicated.

variations of the input parameters (see Table 2) have been used. As discussed above, at
present the theoretical uncertainty is dominated by the e�ect of the experimental error
of the top-quark mass.

Fig. 1 con�rms the well-known preference for a light Higgs-boson mass within the
SM. If the 95% exclusion bound from the direct search for the SM Higgs is taken into
account [21], the 1� bands corresponding to the theory prediction and the experimental
result for MW show only a marginal overlap.

In summary, we have presented the currently most accurate prediction for MW in
the Standard Model. We have discussed the relative importance of the complete one-
loop and two-loop contributions as well as the known corrections beyond two-loop order.
We have summarised the present status of the theoretical uncertainties of MW from the
experimental errors of the input parameters, and we have obtained an estimate for the
remaining theoretical uncertainties from unknown higher-order corrections. In the region
of Higgs-mass values preferred by the electroweak precision data, MH

<� 300 GeV, the
uncertainty from unknown higher-order corrections amounts to about 4 MeV. This is
much smaller than the present experimental error of MW and even below the envisaged
future experimental error at the next generation of colliders. Having reached this level of
theoretical precision ofMW is important, however, for the precision test of the electroweak
theory, in particular in view of the fact that MW can be used as an input for calculating
the e�ective weak mixing angle at the Z resonance, sin2 �e�.

We have furthermore presented a simple parametrisation of the full result containing
all relevant corrections, which should be suÆciently accurate for practical applications.
It approximates the full result for MW to better than 0.5 MeV over the whole range of
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10 GeV �MH � 1 TeV if all other experimental input values vary within their combined
2� region around their experimental central values. In view of the experimental exclusion
bound on the Higgs-boson mass of MH > 114:4 GeV it will normally be suÆcient to
restrict to the smaller range of 100 GeV � MH � 1 TeV. For this case we provide a
simple parametrisation which approximates the full result for MW even within 0.2 MeV.
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